
opualingf.mgsystems
UNIT - 2

THREADS Eg
CONCURRENCY

feedback1correctionsivibha@pesu.pes.edu VIBHAMASTI

thread

° fundamental unit of CPU utilisation

° thread ID
, Pc , reg , stack

• run within app

• shares thread ID
,
data

,
file descriptors

, signals to other threads

of same process

•

eg: browser
- multiple tabs
- load content

, display animations , play video etc

°

eg: word processor
- input
- spell checking
-

grammar checking

←
shares data

,

code data files code data files
code

, files

registers stack registers registers registers ← pc also

stack stack stack

thread § § { { a thread

Multithreaded server Architecture

•

process creation heavy weighted , thread creation light weighted

• threads - remote procedure call (RPC) systems

° Kernels usually multithreaded

listen for requests
and assign thread

BENEFITS

• Responsiveness - continued execution if one thread blocked
- Ul

- browser : image loading , user input

• Resource sharing - share process resources
,
files
,
data etc

- easier than shared memory or message passing c processes)
-

many threads within same address space

• Economy- cheaper than process creation
,
lower overhead than

context switching
- own registers and stack

-

eg: Solaris , process creation 30 x slower and context switching
5x slower

• Scalability - multiprocessor architecture

- can run on multiple cores parallely

PROCESS vs THREAD

Process Thread

. default : no shared memory
. default : shared memory

• most file descriptors not shared . will share file descriptors

e do not share filesystem context o share filesystem context

• do not share signal handling . share signal handling

file descriptor

Read) Open file

0
"
file descriptor
integer

write

Attributes shared by Threads

• process ID
, parent process ID

, process group ID
,
session ID

€suser
group

0,0
u t
user

group ID

ID

°

controlling terminal

•

process credentials (user ID
, group ID)

e record locks created using faith); signal dispositions

° file system related information; umask, and , root

. resource limits
,
CPU time consumed (returned by times C))

o resources consumed Cgetrusagec)) , nice value (setpriorityc) , nicely

Attributes specific to Threads

° thread ID , signal mask

° errno variable
, specific data

• floating point environment Cfenvcs))

° Stack

thread

° ID

°

registers
° stack

. scheduling priority , policy
o signal mask
• errno variable

o thread- specific data

. no guarantee of execution order of newly created thread and

calling thread

• newly created thread : access to process address space , inherits

calling thread 's fern and signal mask

° pending signals cleared

. pthread functions return error code when they fail (do
not set errno like other POSIX functions)

single CORE

multi CORE

MULTICORE PROGRAMMING

• challenges : dividing activities , balance , data splitting, data dependency,
testing and debugging

. parallelism : system can perform more than one task simultaneously

• concurrency : more than one task making progress ; scheduler provides
concurrency in single core processors

Parallelism

D Data parallelism : distributes subsets of same data across multiple
cores

,
same operation on each

eg
: sum of n numbers

,
each core finds subsum

D Task parallelism : distributing threads across cores
,
each thread

performing unique operation

AMDAHL'S LAW

° performance gains from adding additional cores to an app
with both serial and parallel components

° S : portion of app that needs to be done in serial

N : processing cores

speedup E l

St Cl
-s)
N

• if app is 75-1. parallel , 25-1. serial , moving from l to 2 cores

N -- I speedup
'
-1- -

- I

0.251-0-75

N -- 2 : speedup E I = I -6

0.25-10-7-5
2

-

'

- speedup = 1.6 times

. as n→ a
, speedup → is

user threads a kernel threads

User threads : management done by user- level threads library
- POSIX Pthreads
- windows threads

- Java threads

Kernel threads : supported by kernel
- general purpose oses

MULTITHREADING MODELS

°

Many
- to - one Kemal threads

. One - to - one for a user
°

Many - to -many thread

Many - to -one
main

memory.

many user
- level threads

d
mapped to single kernel thread

°

one thread blocking causes all

to be blocked

• few systems use : Solaris Green

threads
,
GNU portable Threads

One - to -one

° single user thread mapped to

single kernel thread

• more concurrency than many
- to - one

• creating user thread creates kernel

thread

°

eg: Linux , windows , Solaris 9 and later

Many - to -Many

•

many user level threads to be

mapped to many kernel threads

° allows OS to create sufficient

kernel threads

•

eg: Solaris prior to version 9
,

windows w ThreadFiber package

Two- Level Model

. similar to M :M but allows UT to

bind to KT

•

eg: IRIX , HP-UX , Tru 64 UNIX ,
Solaris 8 and earlier

PTHREADS

° either user- level or kernel level

. POSIX standard API - specification

° In UNIX Oses - Solaris
,
Linux

,
MacOS

pthread - createa

env/NULL
←

T routine T pointer to list of args

pthread - joint)

←
thread ID

←
return

value

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#define NUM_THREADS 5

void *PrintHello(void *threadid) {

 long tid;

 tid = (long) threadid;

 printf("Hello, it's thread #%ld!\n", tid);

 pthread_exit(NULL);

}

int main(int argc, char *argv[]) {

 pthread_t threads[NUM_THREADS];

 int rc;

 long t;

 for (t = 0; t < NUM_THREADS; ++t) {

 printf("In main: creating thread %ld\n", t);

 rc = pthread_create(&threads[t], NULL, PrintHello, (void*) t);

 if (rc) {

 printf("ERROR; return code for pthread_create() is %d\n", rc);

 exit(1);

 }

 }

 /* Last thing main() should do */

 pthread_exit(NULL);

 return 0;

}

https://www.geeksforgeeks.org/multithreading-c-2/

pthread- exit C) , pthread - self C) , pthread- attr- inits

thread 1. c

thread
NO

.

←

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

void *PrintHello(void *n) {

 int var;

 var = (int) n;

 printf("Hello, it's thread %d\n", var);

 pthread_exit(NULL);

}

int main(int argc, char *argv[]) {

 pthread_t tid;

 int n = 9;

 int rc;

 rc = pthread_create(&tid, NULL, PrintHello, (void *)n);

 if (rc) {

 printf("ERROR; return code from pthread_create() is %d\n", rc);

 exit(1);

 }

 /* Wait call */

 pthread_join(tid, NULL);

 /* Last thing main() should do */

 pthread_exit(NULL);

 return 0;

}

thread2.C

COMPILING
← linking necessary

OUTPUT

thread2 -c

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

void *PrintHello(void *n) {

 int var;

 var = (int) n;

 printf("Hello, it's thread %d\n", var);

 var += 2;

 return (void *) var;

 pthread_exit(NULL);

}

int main(int argc, char *argv[]) {

 pthread_t tid;

 int n = 9;

 int rc;

 void *a;

 rc = pthread_create(&tid, NULL, PrintHello, (void *) n);

 if (rc) {

 printf("ERROR; return code from pthread_create() is %d\n", rc);

 exit(1);

 }

 /* Wait call */

 pthread_join(tid, &a);

 printf("%d\n", (int) a);

 /* Last thing main() should do */

 pthread_exit(NULL);

 return 0;

}

thread 't -e synchronisation
- later ycoelpnupeteingoufoers

race condition

thread3. c return from routine

OUTPUT

can pass

array I

¢ struct

←memory
location

to retrieve from

https://www.geeksforgeeks.org/thread-scheduling/

THREAD SCHEDULING

• distinction b/w user- level and kernel- level threads

. user- level threads on lightweight processes CLWP)

- Process - contention scope (Pcs) : threads within app (process
- System- contention scope (Scs) : threads within system

• API to specify scope of thread (Pcs or SCS)
- PTHREAD - scope - PROCESS PCS
- PTHREAD - SLOPE- SYSTEM

! SCS

° Linux 4 MacOS only allow PTHREAD- SLOPE
-
SYSTEM

° More :

#include <pthread.h>

#include <stdio.h>

int main(int argc, char *argv[]) {

 int scope;

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* first inquire on the current scope */

 if (pthread_attr_getscope(&attr, &scope) != 0) {

 fprintf(stderr, "Unable to get scheduling scope\n");

 }

 else {

 if (scope == PTHREAD_SCOPE_PROCESS) {

 printf("PTHREAD_SCOPE_PROCESS\n");

 }

 else if (scope == PTHREAD_SCOPE_SYSTEM) {

 printf("PTHREAD_SCOPE_SYSTEM\n");

 }

 else {

 fprintf(stderr, "Illegal scope value.\n");

 }

 }

 return 0;

}

scope. c

MacOS

Linux

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

void *runner(void *);

int main(int argc, char *argv[]) {

 int scope;

 long i;

 pthread_t tid[NUM_THREADS];

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* first inquire on the current scope */

 if (pthread_attr_getscope(&attr, &scope) != 0) {

 fprintf(stderr, "Unable to get scheduling scope\n");

 }

 else {

 if (scope == PTHREAD_SCOPE_PROCESS) {

 printf("PTHREAD_SCOPE_PROCESS\n");

 }

 else if (scope == PTHREAD_SCOPE_SYSTEM) {

 printf("PTHREAD_SCOPE_SYSTEM\n");

 }

 else {

 fprintf(stderr, "Illegal scope value.\n");

 }

 }

 /* set the scheduling algorithm to PCS or SCS */

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* create the threads */

 for (i = 0; i < NUM_THREADS; i++) {

 pthread_create(&tid[i], &attr, runner, (void *) i);

 }

 /* now join on each thread */

 for (i = 0; i < NUM_THREADS; i++) {

 pthread_join(tid[i], NULL);

 }

 return 0;

}

/* Each thread will begin control in this function */

void *runner(void *param) {

 int i = (int) param;

 printf("Inside runner - i = %d\n", i);

 pthread_exit(0);

}

Scope2 .

° Windows- Resource monitor

o

#
threads

fiery
. MacOS - Activity monitor

of
threads

WINDOWS MULTITHREADED C PROGRAM

° Win32 API

° one - to- one mapping
. support for a fibre library - many -to - many

° thread
- ID
-

reg set
-

processor status
- user stack

- kernel stack

-

private storage area (DLLs)

• create ThreadC)

• wait For single object) - join

C multi-Threaded Programs

. Global vars
- shared by all threads
- stored in data segment

• Local vars
- for each thread

° DWORD - long int

PROGRAM IN WINDOWS

#include <stdio.h>

#include <windows.h>

DWORD Sum; /* data shared by threads */

/* thread runs in this function */

DWORD WINAPI Summation(LPVOID Param) {

 DWORD Upper = *(DWORD *)Param;

 for (DWORD i = 0; i <= Upper; ++i) {

 Sum += i;

 }

 return 0;

}

int main(int argc, char const *argv[]) {

 DWORD ThreadId;

 HANDLE ThreadHandle;

 int Param;

 if (argc != 2) {

 fprintf(stderr, "An integer parameter is required\n");

 return -1;

 }

 Param = atoi(argv[1]);

 if (Param < 0) {

 fprintf(stderr, "An integer >= 0 is required\n");

 return -1;

 }

 ThreadHandle = CreateThread(

 NULL, /* default security attributes */

 0, /* default stack size */

 Summation, /* thread routine */

 &Param, /* parameter to thread function */

 0, /* default creation flags */

 &ThreadId /* returns ThreadId */

);

 if (ThreadHandle != NULL) {

 /* wait for thread to finish */

 WaitForSingleObject(ThreadHandle, INFINITE);

 /* close thread handle */

 CloseHandle(ThreadHandle);

 printf("Sum = %d\n", Sum);

 }

 return 0;

}

sum of numbers
from 1 ton

MUTUAL EXCLUSION q SYNCHRONISATION

Producer - consumer Problem
• Producer produces items for buffer
° Consumer consumes items from buffer

• counter incremented when producer produces
. counter decrements when consumer consumes

° Counter- keeps track of buffer
° Shared variable counter

PRODUCER

can be

inconsistencies if

comme. I :÷÷÷÷÷÷erace

condition

PROCESS SYNCHRONISATION

Race condition

critical section Problem

- critical section : segment of code where kernel data

structures are modified
- changing common vars

-

updating process table
-

writing file

a system of n processes Ipo , pi , Pnl

° Only one process in critical section at any given time;
no other process allowed to enter critical section

° Each process asks permission to enter critical section

General structure for Process Pi

→ permission
condition

SOLUTION

i . Mutual Exclusion : if Pi is executing in its critical section
,

no other process can be executing in critical section

2
. Progress : selection of processes that will enter critical section

next cannot be postponed indefinitely
3
. Bounded waiting : A bound on number of times that other

processes are allowed to enter CS after a process has made

a request to enter its CS and before that request is granted

CS Handling in OS

D Preemptive:
' allows preemption when running in kernel mode
° difficult to design on SMP architectures (symmetric multi

processor)

2) Non-preemptive :
. runs until exits kernel mode

,
blocks or voluntarily yields

CPU

. free of race condition in kernel mode
- free of race conditions on kernel data structures

° Preemptive kernel faster , more responsive

Peterson 's solution

- Software - based solution

- Assume load / store instructions are atomic C cannot be

interrupted)

. For two processes only
' Pi and Pj j j -- I - i

-

Requires 2 processes to share 2 data items

int turn ;
bool flag 123;

i turn : whose turn it is to enter CS
' flag array: indicates if process ready to enter CS (wants

to enter again)

Algorithm (for Pi)

To prove solution is correct

1. Mutual exclusion preserved :
Pi enters CS only if turn -- i or flagCj] -- false

2
. Progress requirement is satisfied

3. Bounded waiting time requirement is met

Prove 243

do {
flag[i] = TRUE
turn = j
while (flag[j] && turn == j);
/* do-nop */

critical section

flag[i]=FALSE;

remainder section

} while(TRUE);

do {
flag[j] = TRUE
turn = i
while (flag[i] && turn == i);
/* do-nop */

critical section

flag[j]=FALSE;

remainder section

} while(TRUE);

Code for Pi

Code for Pj

° Cannot predict when each process gets interrupted
'

SYNCHRONISATION HARDWARE

° Hardware solution for critical section problem

° Locking : protect critical areas with locks ; lock and
unlock technique

°

Locking - entry section , process then moves to critical

section
,
then enters exit section

, unlocking - exit section

° All 3 conditions of critical section satisfied

° Modern oses cannot disable preemption

° Atomic hardware instructions - cannot be interrupted
- test memory word and set value (test and set)

-

swap contents of two memory words

Test and set Lock CTSL)

° test
-
and - set instruction - sync

° Returns old value of memory location and sets it to 1

in an atomic operation

° one process executing test - and - set cannot be interrupted by
another process executing test- and- set (atomic)

while (true) {
while (lock != 0);
/* do nothing */

lock=1;

critical section

lock=0;

remainder section
}

while (true) {
while (lock != 0);
/* do nothing */

lock=1;

critical section

lock=0;

remainder section
}

Scheme # I

• Is mutual exclusion satisfied?

°

Starting value : lock -- O

Process 0 Process 1

Execution sequence

lock -- O

Po : white lock ! -- O 's

A context switch mutual exclusion

Pt : Whitey
,

'

Ifk ! -- O 's } not satisfied

A context switch

PO : lock =L

critical section

test- and- set Instruction

→ local var

f gweiaitetrea

° Atomic
lock = 0

Implementation of mutual Exclusion
*target -- O

rv -- O

compare - and- swap Instruction

° Atomic

° Only if * value == expected, * value = new - value
° x 86 4 Itanium → CMPXCHG

Implementation of mutual Exclusion

Bounded waiting requirement not satisfied

Bounded waiting satisfied

MUTEX LOCKS

° Software solution to CS problem

° Protect CS with acquire C) and unlock with release C)

(both atomic)

° Requires busy waiting j called spinlock (wastes CPU

cycles)

Spinlock Advantages
• no context switch when process must wait on lock

° when locks held for short times - useful
° multithreaded systems

acquire C) and release c)

Solution to CS Problem Using Mutex Locks

semaphore
° More sophisticated than mutex locks

• Semaphore S - integer variable

° To access : wait l) and signal l)
t t

decrement
,
P increment

,
V

DEFINITIONS

semaphores

°

Binary semaphore : integer value 0 or l ; same as mutex lock

° Integer semaphore : unrestricted domain

° Semaphore synch initialised to O

l

l

Semaphore Implementation with no Busy waiting
. associated waiting queue for semaphore

° block: place invoking process onto waiting queue

° wakeup : remove a process from waiting queue and place
in ready queue

decrement

}
instead of

busy wait

increment

semaphore struct

o correct usage : first wait Cmutex) , then signal Cmutex)

DEADLOCK

° Two or more processes waiting indefinitely for an event

that can be caused only by one of the waiting processes

° Can lead to starvation ; halts progress indefinitely

° Process never removed from semaphore queue

°

Eg: let two processes Po and P
, be trying to access

two semaphores S and Q
,
both initialised to 1

if context
switch here

:
Po

'

n

P
,

deadlock
-

Q

PRIORITY INVERSION

° Scheduling problem : low priority process holds lock required
by high priority process

° Solution : priority inheritance protocol

° If several tasks are waiting for a resource
,
the task

currently holding it is given priority

Example :

° Three processes : Pl priority 1
,
P2 priority 2

, P 's priority 3

° P3 holding semaphore S
, P1 waiting for s

° Assume P3 preempted by P2 ; indirectly blocks S from Pl

- P3 still holding S

- Pl cannot access S

° To prevent : priority inheritance protocol

Priority Inheritance protocol

° Intermediate tasks cannot preempt resource - avoiding
priority inversion

. After releasing critical resource, priority set back to

original priority

° Mars Sojourner in 1997 : kept facing resets due to

priority inversion solved by setting global variable
to enable priority inheritance on all semaphores

do {
 ...
 /* produce an item in next_produced */
 ...

 wait(empty); // wait until empty > 0 and then decrement 'empty'
 wait(mutex); // acquire lock

 ...
 /* add next produced to the buffer */
 ...

 signal(mutex); // release a lock
 signal(full); // increment full

} while (true);

do {
 wait(full); // wait until full > 0 and then decrement 'full'
 wait(mutex); // acquire the lock
 ...
 /* remove an item from buffer to next_consumed */
 ...

 signal(mutex); // release the lock
 signal(empty); // increment 'empty'

 ...
 /* consume the item in next consumed */
 ...
} while (true);

Classic Problems of synchronisation

l . Bounded Buffer Problem

°
n buffers

• each holds one item

o semaphore mute x : init I s lock

• semaphore full : init o s no , of full buffers
• semaphore empty : init n > no . of empty buffers

• Producer and consumer share above resources

Producer

consumer

2
.
Readers - Writers Problem

° Shared resource to be accessed by multiple processes
° Process : reader or writer

°

Any number of readers can read simultaneously
• one writer at a time

. During write, no other read or write allowed
° No write if read happening
• Filet database

• dataset

• semaphore rw
-
mutes : init I ' binary

a semaphore mutes : init I s lock

• integer read- count : init o s no . of reading processes

writer

variations

1 . No reader kept waiting
unless writer has

permission to use shared

Reader object
2 . once writer ready , writes

ASAP

3 . Dining Philosophers
' Problem

4 O
O

" l

l

3
3

22
° Philosophers sitting at circular table for dinner
. Pick up chopsticks one at a time

° Need both to eat

° Release both when done

. case : 5 philosophers

° semaphore chopstick 153 : init I

• bowl of rice (dataset)

Philosopher i

#include <stdio.h>

#include <pthread.h>

#include <unistd.h>

#include <stdlib.h>

pthread_t tid[2];

pthread_mutex_t mutex;

unsigned int rc;

int N;

void *PrintEvenNos(void *);

void *PrintOddNos(void *);

int oddsum = 0;

int evensum = 0;

int main(int argc, char const *argv[]) {

 void *even1 = 0;

 void *odd1 = 0;

 int sum = 0;

° No two neighbours can eat at once

° Can cause dea lock (each picks up left chopstick : all starve)

Remedies to Deadlock Problem

Boi

•

•

PROGRAMMING EXAMPLE

° Sum of n natural numbers

° Thread 1 : even sum

° Thread 2 : odd sum

 if (argc != 2) {

 fprintf(stderr, "An integer parameter is required\n");

 return -1;

 }

 N = atoi(argv[1]);

 if (N < 0) {

 fprintf(stderr, "An integer >= 0 is required\n");

 return -1;

 }

 /* last param can be N but it is global here */

 pthread_create(&tid[0], 0, &PrintEvenNos, NULL);

 pthread_create(&tid[1], 0, &PrintOddNos, NULL);

 pthread_join(tid[0], &even1);

 pthread_join(tid[1], &odd1);

 sum = *((int *) even1) + *((int *) odd1);

 printf("Sum of first N natural numbers: %d\n", sum);

 return 0;

}

void *PrintEvenNos(void *Nptr) {

 rc = pthread_mutex_lock(&mutex);

 do {

 if (N % 2 == 0) {

 evensum += N;

 --N;

 }

 else {

 rc = pthread_mutex_unlock(&mutex);

 }

 } while (N >= 0);

 return (void *)&evensum;

}

void *PrintOddNos(void *Nptr) {

 rc = pthread_mutex_lock(&mutex);

 do {

 if (N % 2 == 1) {

 oddsum += N;

 --N;

 }

 else {

 rc = pthread_mutex_unlock(&mutex);

 }

 } while (N >= 0);

 return (void *)&oddsum;

}

DEADLOCKS

° Several processes competing for same resource

• Process holding a resource and waiting for another

resource that is being held by another process

° Finite number of resources

° Each resource type Ri has wi instances

° Each process : request C) , user , release c) resource

red wait;assign S C
for ng

Po

'

n

P
,

bq. red
x. . sig
Fr ng s

q
as xo

conditions that create Deadlock

° If four conditions met by 2 processes simultaneously

° Mutual exclusion
° Hold and wait

° No preemption
° Circular wait

RESOURCE ALLOCATION GRAPH

• Directed graph describing resource allocation

• GCV
,
E)

,
V partitioned into P = { P

. ,
R . . . Pn } processes and

R -- {Ri , Rz . . . Rn } resources

° Request edge : Pi → Rj

• Assignment edge : Rj → Pi

. Symbols

process Pi resource Rj with 4 instances

° Pi requests for instance of Rj

Pi 3 Rj

. Pi holding instance of Rj

Pi c Rj

Example :

I . No deadlock - no cycle 2
.
Deadlock - cycle

3 . No deadlock - cycle

Handling Deadlocks

1 . Prevention) avoidance
2
.
Detect Ee recover

3 . Ignore

1. Circular wait

° Each resource given a numeric value ; R
-

- { Ri , Rz . . . Rm }

° Processes must request for resources in increasing order

of value

. If a process is holding a resource , eg , Rs , and makes

a request for Ra ,
the request will not be granted

° Protocol 1 : Process makes request for Ri and then Rj .
Request allowed only if FCR;) > FCR ;) (where F : R → N)

° Protocol 2 : Process requesting resource Rj must have released

all resources Ri such that FCRI) I FCRJ)

° If protocols followed , circular wait will not hold

→
Po
y
waiting for R

Pg
s

held by

P
r l

(
p
,
I

°

eg : FC HD) -- 5
,

f- (printer)
-

- 12
,

f- Ctape drive)-- I etc

° Must not access mutex locks in different orders

} → correct

} → wrong

simultaneous A → B and B -IA : dealock

2
. Mutual Exclusion

° To invalidate
,
some resources should be shareable

. Some will still be non- shareable (printer etc.)

3 . Hold and wait

° To invalidate
,
resources cannot make request if they are

already holding on to a resource

. can start execution only after all resources have been

allocated Clow utilisation of resources - limitation)

P
, Pz

Pa
,

y
holding q
requesting ;

R
, R2 if preempted q

releases resource,

deadlock solved
4 . No preemption

° Make resources preemptive

° If process makes request for unavailable resource,

all its resources are released

° Added to list of resources for which process is

waiting

° Can restart process only after all required resources

allocated

DEADLOCK DETECTION

system : one Instance of Each Resource

° Maintain wait - for graph
edge

. Pi → Pj ⇒ Pi waiting for Pj to release resource

° Periodically search for cycles in a graph

• 01h23 operations → n : varices

resource allocation corresponding wait -for
graph graph

° Can use DFS

System :many Instances of Each Resource

° Available : vector of length m indicating no . of available

resources of each type

° Allocation : nxm matrix defining no
. of resources of each

type currently allocated to each process

° Request : nxm matrix indicating current request of each

process . Request Cisg
- T

-
-k means Pi is requesting k more

instances of Rj

Detection Algorithm

I . Let workcm] and finishCn] be vectors

. Initialise work = Available

° for i= 1,2 , . . . ,
n ,
if Allocation [IT FO ,

then finish Li] =

false
,
else finish Cis -- true

2. Find an index i such that both

Ca) finish Ci] = -- false

(b) Request Cil E work

if no such i
, go to step 4

3 . Work = Work -1 Allocation Ci]

Finish Cil -- true

go to step 2

4 . If finish Ci] = = false
,
for some i tf ith

,
then the

system is in deadlock State Cpi deadlocked)

• Ocmxn
') operations ; execute once an hour or so

Eg : five Processes Po to Py , All instances) ,
B12 instances)

,

CL 6 instances)

Snapshot at time To

release
→ a

O l O

rel
313

?
→

rel 524 2211
→ O

526 2002
726 2200

✓allocated g released

(Po
,
Pz

, Pz , Pa , P ,>

° Availability -- initial

.
.

'

. no deadlock

. If Pz = 001
,
deadlock

